Volume preserving flow by powers of the $k$th mean curvature

نویسندگان

چکیده

We consider the flow of closed convex hypersurfaces in Euclidean space $\mathbb{R}^{n+1}$ with speed given by a power $k$-th mean curvature $E_k$ plus global term chosen to impose constraint involving enclosed volume $V_{n+1}$ and mixed $V_{n+1-k}$ evolving hypersurface. prove that if initial hypersurface is strictly convex, then solution exists for all time converges round sphere smoothly. No pinching assumption required on

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion by volume preserving mean curvature flow near cylinders

We investigate the volume preserving mean curvature flow with Neumann boundary condition for hypersurfaces that are graphs over a cylinder. Through a center manifold analysis we find that initial hypersurfaces sufficiently close to a cylinder of large enough radius, have a flow that exists for all time and converges exponentially fast to a cylinder. In particular, we show that there exist globa...

متن کامل

The Volume Preserving Mean Curvature Flow near Spheres

By means of a center manifold analysis we investigate the averaged mean curvature flow near spheres. In particular, we show that there exist global solutions to this flow starting from non-convex initial hypersurfaces.

متن کامل

Deforming Area Preserving Diffeomorphism of Surfaces by Mean Curvature Flow

Let f : Σ1 → Σ2 be an area preserving diffeomorphism between compact Riemann surfaces of constant curvature. The graph of f can be viewed as a Lagrangian submanifold in Σ1 × Σ2. This article discusses a canonical way to deform f along area preserving diffeomorphisms. This deformation process is realized through the mean curvature flow of the graph of f in Σ1 × Σ2. It is proved that the flow exi...

متن کامل

Flow by Powers of the Gauss Curvature

We prove that convex hypersurfaces in Rn+1 contracting under the flow by any power α > 1 n+2 of the Gauss curvature converge (after rescaling to fixed volume) to a limit which is a smooth, uniformly convex self-similar contracting solution of the flow. Under additional central symmetry of the initial body we prove that the limit is the round sphere.

متن کامل

The volume preserving crystalline mean curvature flow of convex sets in R

We prove the existence of a volume preserving crystalline mean curvature flat flow starting from a compact convex set C ⊂ R and its convergence, modulo a time-dependent translation, to a Wulff shape with the corresponding volume. We also prove that if C satisfies an interior ball condition (the ball being the Wulff shape), then the evolving convex set satisfies a similar condition for some time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2021

ISSN: ['1945-743X', '0022-040X']

DOI: https://doi.org/10.4310/jdg/1612975015